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Approximation-Based Self-Triggered Model Predictive Control for
Perturbed Nonlinear Systems

Chang Xu1, Yu Kang2, Yun-Bo Zhao1, Pengfei Li1and Tao Wang1

Abstract— This paper proposes an approximation-based self-
triggered model predictive control strategy for nonlinear
sampled-data systems with additive disturbance and system
constraints. In our strategy, the finite horizon optimal control
problem (FHOCP) and the triggering condition are designed
based on approximate models in a discrete-time manner. By
implementing the strategy, the computation problem of the
FHOCP becomes tractable since it is computed in a discrete-
time framework. Meanwhile, the next triggering instant is pre-
determined by the triggering condition, reducing the sensing
cost and the computing frequency of the FHOCP. Furthermore,
feasibility of the FHOCP and stability of the overall system are
analyzed. Finally, a simulation example verifies the effectiveness
of the strategy.

Index Terms— Self-triggered control, approximations, model
predictive control, sampled-data systems.

I. INTRODUCTION

Over the past few decades, model predictive control (MPC)
has been extensively applied to deal with the control problem of
practical systems [1]. As an efficient technique in handling system
constraints and optimizing control performance, MPC requires to
solve online a finite horizon optimal control problem (FHOCP)
to obtain a sequence of control actions [2]. In general, the MPC
algorithms for continuous-time systems are required to be imple-
mented under digital platforms. Such a combination of continuous-
and discrete-time signals leads to the formation of “sampled-data”
systems. However, solving the FHOCP at each sampling instant
in sampled-data MPC will aggravate the computation load. This
turns out to be the disadvantage of its application in a wide range
of systems, to name a few, large-scale systems with huge total
amount of computing tasks, systems which need fast response like
unmanned vehicles, and systems with limited computing resources
such as micro robots. Therefore designing more efficient MPC
algorithms to reduce resource consuming has been an attracting
problem currently.

One promising approach towards this problem is to introduce
event-driven strategies into sampled-data MPC. In general, the
event-triggered MPC (ETMPC) and self-triggered MPC (STMPC),
which have been proposed in [3]–[8], are the two main cases.
These strategies focus on reducing the computing frequency of the
FHOCP to achieve a better trade-off between resource consuming
and system performance.

In particular, the ETMPC checks whether the triggering condi-
tions at each sampling instant are violated or not. Once violated,
the computation of the FHOCP is activated. In view of this
principle, it can be seen in [3] that an ETMPC strategy based
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on system stability is put forward by guaranteeing the Lyapunov
function to be decreasing between the two successive triggering
instants. While in [4], the triggering condition is derived based on
recursive feasibility by bounding the deviation between the true
states and the corresponding predicted ones. The above results
is of great importance since unnecessary computation of optimal
control problems are neglected. However, one may notice that the
ETMPC requires constantly monitoring the system states, causing
high sensing cost. To avoid this, the STMPC, which obtains pre-
determined next triggering instant by applying the latest system
states, has been widely studied. In [7], an STMPC strategy is studied
for continuous-time perturbed nonlinear systems. In [8], a novel
constraint tightening strategy is proposed and the prediction horizon
is able to be decreased adaptively with the self-triggered scheme.

Nevertheless, previous works on event-driven MPC strategies
mostly consider continuous- or discrete-time systems separately
such that these strategies cannot be directly implemented in
sampled-data systems. To overcome such difficulty, authors of [9]
propose two event-based sampled-data MPC strategies by applying
the non-monotonic Lyapunov method and introduce a tightened set
of state constraint to guarantee the inter-sampling behavior. In [10],
an approximation-based ETMPC strategy is proposed, with which
the approximate discrete-time model and discretized cost function
facilitate the computation of the control problem. However, results
on self-triggered sampled-data MPC can still not be found in state-
of-the-art research.

We propose, in this paper, a self-triggered strategy for sampled-
data MPC to deal with general perturbed constrained sampled-data
nonlinear systems. The main contributions of our work lie in:

1) A more applicable robust approximation-based STMPC strat-
egy is put forward, in which the approximation-based method
provides a solution for the unavailability of the exact model
of the nonlinear system and the STMPC scheme is able to
reduce the computation load effectively;

2) The sufficient conditions for recursive feasibility of the
FHOCP and stability of the overall system are proposed. In
particular, the feasibility and the stability rely on the model
error and the upper bound of the external disturbance.

The rest of this paper is structured as follows: Section II gives
preliminary setup for system description and problem formulation.
Section III shows the main results of the self-triggered strategy
and analyzes the feasibility and the stability. A simulation example
in Section IV verifies the effectiveness of the strategy. Section V
summarizes the paper.

Notations: The real and nonnegative integers are represented as
R and Z respectively in this paper. The n-dimensional Euclidean
space is denoted as Rn. For a matrix Q, we denote its maximum
and minimum eigenvalues as λ(Q) and λ(Q). A symmetric matrix

P is positive definite if P > 0. And for a vector x, ‖x‖ :=
√
xTx

and ‖x‖P :=
√
xTPx respectively represent its Euclidean norm

and P -weighted norm. s[t1,t2] is the truncation of a continuous
signal s(t) from time t1 to t2. Define the Pontryagin difference set
as A ∼ B := {x : x+ y ∈ A, ∀y ∈ B} for two sets A,B ⊆ Rn.
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II. PROBLEM SETUP

Consider the following perturbed continuous-time nonlinear sys-
tem:

ẋ(t) = f(x(t), u(t)) + w(t), t ≥ 0 (1)

where x(t) ∈ Rn and u(t) ∈ Rm represent state and input of
the system, respectively, and w(t) ∈ Rn stands for the external
disturbance. It is assumed that they are subject to the constraints
given by

x(t) ∈ X , u(t) ∈ U , w(t) ∈ W (2)

where X ⊂ Rn,U ⊂ Rm, and W := {w ∈ Rn : ‖w‖R ≤ η}
are compact sets in which the origin is an interior point. R is a
positive definite weighting matrix and η is a nonnegative constant.
The solution of system (1) at time t is denoted as φ(t;x0,u,w)
with initial state x0, control input u, and external disturbance w.
Furthermore, we assume that system (1) satisfies the property given
below.

Assumption 1: The function f(x, u) is locally Lipschitz contin-
uous in x depending on the weighting matrix R with a Lipschitz
constant L > 0:

‖f(x1, u)−f(x2, u)‖R ≤ L‖x1 − x2‖R,
∀x1, x2 ∈ X , u ∈ U . (3)

In general, the MPC algorithms need to be implemented under
digital platforms. Therefore, we shall first define the exact discrete-
time model (DTM) of system (1) as follows:

x(tk+1) = Γe
T (x(tk), u(tk)) + w(tk) (4)

where the sampling instant is denoted by tk+i = (k+ i)T in which
T is the sampling period, i.e., tk+1 = tk + T with k, i ∈ Z.
Γe
T (x, u) is the exact disturbance-free DTM of system (1) and

w(tk) :=
∫ tk+1

tk
w(s)ds.

The standard MPC requires periodically solving an FHOCP at
each sampling instant, aggravating the computation load. In view
of this, our aim is to propose an STMPC strategy, in which the
triggering instants of computing the FHOCP are determined in
terms of the designed triggering condition.

Suppose that tkj denotes the j-th triggering instant with j ∈ Z,
i.e., tkj and tkj+1 are two successive triggering instants:

tkj+1 = tkj +mT (5)

where mT is the triggering interval determined by the triggering
condition.

Note that when implementing STMPC strategy, one problem
arises that the explicit expressions of Γe

T (x, u) are not available
for general nonlinear systems. Another problem is how to select
a proper m. One can notice from (5) that lager triggering interval
indicates lower frequency of computation. Therefore, the key of the
STMPC strategy lies in two aspects: 1) adopting a system model
with a simple expression; 2) designing a triggering condition to
enlarge m while ensuring feasibility and stability.

III. APPROXIMATION-BASED STMPC STRATEGY

A. The FHOCP with Approximate DTM
As mentioned above, the key to solve the first problem is to use

a model which can be more easily obtained. Therefore, we define
the approximate DTM of system (1) without disturbance as

x̂(tk+i+1|tk) = Γa
T (x̂(tk+i|tk), û(tk+i|tk)) (6)

where tk+i = tk + iT and x̂(tk+i|tk) is the ith predicted state
since x(tk). Here Γa

T (x, u) can be obtained in different manners in
terms of numerical methods. Moreover, Γe

T and Γa
T should satisfy

the assumption given below.

Assumption 2: The function Γa
T (x, u) is locally Lipschitz con-

tinuous in x depending on the weighting matrix R and the model
error is bounded:

‖Γa
T (x, u)− Γa

T (y, u)‖R ≤ eLT ‖x− y‖R (7)

‖Γe
T (x, u)− Γa

T (x, u)‖R ≤ Tρ(T ) (8)

where ρ is a class-K∞ function, see [11].

Remark 1: The above two inequalities are fairly standard as-
sumptions for the exact and approximate DTM, see [11], [12].
The inequality (7), indicating that Γa

T (x, u) is locally Lipschitz
continuous, has a different form compared to inequality (3) due
to the utilization of Gronwall-Bellman inequality. The inequality
(8) bounds the model error between Γe

T and Γa
T over time interval

[tk+i, tk+i+1], and the model error can be reduced by applying
more accurate approximation methods.

Based on the assumptions given above, we can derive the
upper bound of the deviation between the real system (1) and its
corresponding approximate DTM (6).

Lemma 1 ([10]): Denote the state error as: e[tk+i,tk+i+τ ] =
φ(tk+i + τ ;x(tk),u[tk+i,tk+i+τ ],w[tk+i,tk+i+τ ]) − x̂(tk+i|tk),
with i = 0, 1, ..., N − 1 and τ ∈ [0, T ). With Assumption 1 and 2
hold, the state error has an upper bound as

‖e[tk+i,tk+i+τ ]‖R ≤ γτ +
eiLT − 1

eLT − 1
(Tρ(T ) + ηT ) (9)

where the original system (1) is bounded by ‖f(x(t), u(t)) +
w(t)‖R ≤ γ.

With the lemma given above, by defining the Pontryagin differ-
ence set: Xi = X ∼ Bi where Bi = {x ∈ Rn : ‖x‖R ≤ γτ +
eiLT−1
eLT−1

(Tρ(T )+ηT )}, one can notice that once the predicted states

satisfy x̂(tk+i|tk) ∈ Xi in the approximate DTM, the continuous-
time states of system (1) over time interval [tk+i, tk+i + τ ] will be
guaranteed to meet the constraints in (2).

The cost function is defined as

J(x(tk), û(tk), N)

=

N−1∑
i=0

TVl(x̂(tk+i|tk), û(tk+i|tk)) + Vf (x̂(tk+N |tk) (10)

where N stands for prediction horizon and û(tk) = {û(tk|tk),
û(tk+1|tk), ..., û(tk+N−1|tk)} is a sequence of control input.
Vl(x, u) = ‖x‖2Q + ‖u‖2P is the stage cost, Vf (x) = ‖x‖2R is
the terminal cost, Q,P,R are positive definite weighting matrices.
With i = 0, 1, ..., N − 1 and x̂(tk|tk) = x(tk), the FHOCP based
on approximate DTM is formulated as follows:

min
û(k)

J(x(k), û(k), N)

s.t. x̂(k + i+ 1|k) = Γa
T (x̂(k + i|k), û(k + i|k)),

x̂(k + i|k) ∈ Xi,

û(k + i|k) ∈ U ,
x̂(k +N |k) ∈ Xf

(11)

where we denote tk+i as k+ i for simplicity and Xf represents the
terminal state constraint set: Xf = {x ∈ Rn : ‖x‖R ≤ ε}.

Furthermore, the following assumption is stated to establish our
self-triggered MPC strategy.

Assumption 3: The stage cost Vl(x, u), the terminal cost Vf (x),
a local controller κ(x), the terminal state constraint set Xf , another
significant set Xr satisfy the properties given below:

1) 0 ∈ Xf , Xf ⊂ Xr = {x ∈ Rn : ‖x‖R ≤ r} with 0 < ε < r
and Xr ⊆ {x ∈ XN−1 : κ(x) ∈ U};
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2) Γa
T (x, κ(x)) ∈ Xf , ∀x ∈ Xr;

3) Vf (Γ
a
T (x, κ(x)))− Vf (x) ≤ −TVl(x, κ(x)), ∀x ∈ Xr;

Remark 2: The above properties, which are applied as guide-
lines to determine κ(x), Xf and Xr , are standard assumptions and
can be found in [2], [10], [13], [14].

With the above assumptions and the formulation of the FHOCP
based on approximate DTM, we can present the self-triggered
strategy in the following subsection.

B. Self-Triggered MPC Strategy
In this part, we propose a self-triggered MPC strategy for the

FHOCP (11). We assume that the FHOCP is solved at instant
tkj and the next triggering instant is tkj+1 . The optimal control
and state sequence at tkj are respectively denoted as û∗(kj) =
{û∗(kj |kj), û∗(kj + 1|kj), ..., û∗(kj +N − 1|kj)} and x̂∗(kj) =
{x̂∗(kj |kj), x̂∗(kj + 1|kj), ..., x̂∗(kj +N |kj)}. The triggering in-
stant is recursively calculated according to (5) and the value of m
is determined by the condition designed as

m = min{m1,m2, N} (12)

where

m1 = sup

{
m :

eNLT − e(N−m)LT

eLT − 1
(Tρ(T ) + ηT ) ≤ r − ε

}
(13)

m2 =

sup

{
N−1∑
i=m

T

[(
λ(
√
Q)

λ(
√
R)

eiLT emLT − 1

eLT − 1

(
Tρ(T ) + ηT

))2

+ 2
(λ(√Q)

λ(
√
R)

)2

eiLT×

emLT − 1

eLT − 1

(
Tρ(T ) + ηT

)‖x̂∗(kj + i|kj)‖Q
]

+
eNLT − e(N−m)LT

eLT − 1
(Tρ(T ) + ηT )(r + ε)

≤ σ

m−1∑
i=0

T
(
‖x̂∗(kj + i|kj)‖2Q + ‖û∗(kj + i|kj)‖2P

)}
(14)

Here, σ ∈ (0, 1) is defined as a performance factor. When x(kj) /∈
Xr , the FHOCP is solved according to the proposed triggering
condition. Once x(kj) ∈ Xr , a dual-mode MPC [15] is adopted.
The control input which is actually applied to system (1) is

u(t) = û∗(kj + i|kj) (15)

over time interval [tkj+i, tkj+i+1), where i = 0, 1, ..., kj+1−kj−
1. Algorithm 1 then summarizes the proposed approximation-based
STMPC strategy.

The following subsections prove the recursive feasibility of the
above strategy and the overall system stability.

C. Feasibility Analysis
The folowing lemma is used in establishing the recursive feasi-

bility of the strategy.

Lemma 2 ([10]): For x ∈ Xi+m, y ∈ Rn satisfying

‖x− y‖R ≤ eiLT emLT − 1

eLT − 1
(Tρ(T ) + ηT ) (16)

we have y ∈ Xi.

Algorithm 1 Approximation-based STMPC strategy

Initialization: Given j = 0, the prediction horizon N ,

the sampling period T , the initial state x0, and the related

parameters P,Q,R, η, ρ(T ), ε, r, σ.

1: If j = 0, go to step 3. Otherwise, go to step 2;

2: At any triggering instant tk = tkj , initialize the state

x̂(kj |kj) = x(kj). If x(kj) ∈ Xr, use the local controller

κ(x). Otherwise, go to step 3;

3: Solve the FHOCP (11) to obtain a sequence of optimal

control input û∗(kj);
4: Determine the value of m and the next triggering instant

tkj+1
in terms of (12) and (5), respectively;

5: Apply u(t) as in (15) to the actual system (1), and update

the time tk = tk+1;

6: If tk = tkj+1
, update j = j + 1 and go to step 2.

Otherwise, go to step 5.

With Lemma 2, the feasibility analysis results is concluded in
the theorem given below.

Theorem 1: Consider utilizing the triggering condition (13)
in system (1) with Assumption 1-3 hold, then the proposed
approximation-based STMPC strategy is feasible.

Proof : It is assumed that the FHOCP (11) is solved at instant
tkj and we construct a feasible control sequence ū(kj+1) =
{ū(kj+1|kj+1), ū(kj+1 +1|kj+1), ..., ū(kj+1 +N − 1|kj+1)} for
the next triggering instant tkj+1 as

ū(kj+1 + i|kj+1) ={
û∗(kj+1 + i|kj) i = 0, ..., N −m− 1

κ(x̄(kj+1 + i|kj+1)) i = N −m, ..., N − 1

(17)

and the corresponding feasible state sequence is x̄(kj+1) =
{x̄(kj+1|kj+1), x̄(kj+1 + 1|kj+1), ..., x̄(kj+1 +N |kj+1)}.

The deviation between the feasible state and its predicted state
satisfies

‖x̄(kj+1 + i|kj+1)− x̂∗(kj+1 + i|kj)‖R
= ‖Γa

T (x̄(kj+1 + i− 1|kj+1), û
∗(kj+1 + i− 1|kj+1))

− Γa
T (x̂

∗(kj+1 + i− 1|kj), x̂∗(kj+1 + i− 1|kj))‖R
≤ eLT ‖x̄(kj+1 + i− 1|kj+1)− x̂∗(kj+1 + i− 1|kj)‖R
≤ ...

≤ eiLT ‖x̄(kj+1|kj+1)− x̂∗(kj+1|kj)‖R
≤ eiLT emLT − 1

eLT − 1
(Tρ(T ) + ηT ) (18)

Substituting i = N − m into (18) and adopting (13) in the
triggering condition make the following inequality hold

‖x̄(kj +N |kj+1)− x̂∗(kj +N |kj)‖R
≤ e(N−m)LT emLT − 1

eLT − 1
(Tρ(T ) + ηT )

≤ r − ε

(19)

We then have, by triangle inequality, ‖x̄(kj + N |kj+1)‖R ≤
‖x̂∗(kj+N |kj)‖R+r−ε. Due to x̂∗(kj+N |kj) ∈ Xf , furthermore
we can obtain ‖x̄(kj+N |kj+1)‖R ≤ r, i.e., x̄(kj+N |kj+1) ∈ Xr .
By applying 1) and 2) in Assumption 3, we have Γa

T (x̄(kj +
N |kj+1), κ(x̄(kj +N |kj+1))) ∈ Xf .

One can notice that the constructed feasible control sequence
(17) will drive the states into terminal region, i.e., x̄(kj + N +
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1|kj+1) ∈ Xf . Then we need to clarify that the input and state
sequence corresponding to (17) satisfy the constraints in (11). Here,
the expression of ū(kj+1) illustrates that the input constraints are
satisfied and we shall focus on the state constraints.

It holds with Lemma 2 that

• For i ∈ [0, N − m], due to x̂∗(kj+1 + i|kj) ∈ Xi+m and
inequality (18), we can obtain x̄(kj+1 + i|kj+1) ∈ Xi;

• For i ∈ [N −m+ 1, N − 1], due to x̄(kj +N |kj+1) ∈ Xr ,
by using the local controller κ(x) and applying 1) and 2) in
Assumption 3, we have x̄(kj+1 + i|kj+1) ∈ Xf ⊂ Xi;

• For i = N , due to x̄(kj+1 +N − 1|kj+1) ∈ Xf , the terminal
constraint is obviously satisfied as x̄(kj+1 + N |kj+1) ∈ Xf

by using κ(x).

So the input and state sequence corresponding to the feasible
solution (17) satisfy the constraints in (11). This completes the
proof and the feasibility of the proposed strategy is established.

Moreover, the solution must exist when m reaches its minimum,
i.e., m = 1:

eNLT − e(N−1)LT

eLT − 1
(Tρ(T ) + ηT )

= e(N−1)LT (Tρ(T ) + ηT ) ≤ r − ε

(20)

In other words, the model error and the external disturbance must
satisfy

Tρ(T ) + ηT ≤ r − ε

e(N−1)LT
(21)

D. Stability Analysis

The stability analysis results is concluded in the theorem given
below.

Theorem 2: Consider utilizing the triggering condition (14) in
system (1) with Assumption 1-3 hold and the initial state x0 ∈
X\Xr , then the system state is guaranteed to enter into Xr in finite
time and remain in Xr for the future times.

Proof : Denote the optimal cost function at instant tkj as

J∗(kj) = J(x̂∗(kj), û
∗(kj), N) (22)

We apply the feasible control sequence ū(kj+1) constructed
in (17). The difference of the optimal cost function between two
adjacent triggering instants tkj and tkj+1 satisfies

J∗(kj+1)− J∗(kj)

≤ J(x̄(kj+1), ū(kj+1))− J(x̂∗(kj), û
∗(kj))

= −
m−1∑
i=0

T
(
‖x̂∗(kj + i|kj)‖2Q + ‖û∗(kj + i|kj)‖2P

)

+

N−1∑
i=m

T
(
‖x̄(kj + i|kj+1)‖2Q − ‖x̂∗(kj + i|kj)‖2Q

)

+

N+m−1∑
i=N

T
(
‖x̄(kj + i|kj+1)‖2Q + ‖ū(kj + i|kj+1)‖2P

)
+ ‖x̄(kj+1 +N |kj+1)‖2R − ‖x̂∗(kj +N |kj)‖2R

(23)

Substituting (18) into (23) and applying square difference for-

mula yield

N−1∑
i=m

T (‖x̄(kj + i|kj+1)‖2Q − ‖x̂∗(kj + i|kj)‖2Q)

=

N−m−1∑
i=0

T (‖x̄(kj+1 + i|kj+1)‖2Q − ‖x̂∗(kj+1 + i|kj)‖2Q)

≤
N−m−1∑

i=0

T

[(
λ(
√
Q)

λ(
√
R)

eiLT emLT − 1

eLT − 1

(
Tρ(T ) + ηT

))2

+ 2
(λ(√Q)

λ(
√
R)

)2

eiLT×

emLT − 1

eLT − 1

(
Tρ(T ) + ηT

)‖x̂∗(kj+1 + i|kj)‖Q
]

(24)

The last two terms of inequality (23) can be rewritten as

‖x̄(kj+1 +N |kj+1)‖2R − ‖x̂∗(kj +N |kj)‖2R
= ‖x̄(kj+1 +N |kj+1)‖2R − ‖x̄(kj +N |kj+1)‖2R

+ ‖x̄(kj +N |kj+1)‖2R − ‖x̂∗(kj +N |kj)‖2R
(25)

With 3) in Assumption 3, we have

‖x̄(kj+1 +N |kj+1)‖2R − ‖x̄(kj+1 +N − 1|kj+1)‖2R
≤ −T (‖x̄(kj+1 +N − 1|kj+1)‖2Q

+ ‖ū(kj+1 +N − 1|kj+1)‖2P
)

‖x̄(kj+1 +N − 1|kj+1)‖2R − ‖x̄(kj+1 +N − 2|kj+1)‖2R
≤ −T (‖x̄(kj+1 +N − 2|kj+1)‖2Q

+ ‖ū(kj+1 +N − 2|kj+1)‖2P
)

...

‖x̄(kj +N + 1|kj+1)‖2R − ‖x̄(kj +N |kj+1)‖2R
≤ −T (‖x̄(kj +N |kj+1)‖2Q

+ ‖ū(kj +N |kj+1)‖2P
)

(26)

By summing up the inequalities given above, one can obtain

N+m−1∑
i=N

T
(
‖x̄(kj + i|kj+1)‖2Q + ‖ū(kj + i|kj+1)‖2P

)
+‖x̄(kj+1 +N |kj+1)‖2R − ‖x̄(kj +N |kj+1)‖2R ≤ 0

(27)

So the last three terms of inequality (23) satisfy

N+m−1∑
i=N

T
(
‖x̄(kj + i|kj+1)‖2Q + ‖ū(kj + i|kj+1)‖2P

)
+ ‖x̄(kj+1 +N |kj+1)‖2R − ‖x̂∗(kj +N |kj)‖2R
≤ ‖x̄(kj +N |kj+1)‖2R − ‖x̂∗(kj +N |kj)‖2R
≤ (‖x̄(kj +N |kj+1)‖R − ‖x̂∗(kj +N |kj)‖R)×

(‖x̄(kj +N |kj+1)‖R + ‖x̂∗(kj +N |kj)‖R)

≤ eNLT − e(N−m)LT

eLT − 1
(Tρ(T ) + ηT )(r + ε)

(28)
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Substituting inequalities (24) and (28) into (23) obtains

J∗(kj+1)− J∗(kj)

≤ −
m−1∑
i=0

T
(
‖x̂∗(kj + i|kj)‖2Q + ‖û∗(kj + i|kj)‖2P

)

+

N−1∑
i=m

T

[(
λ(
√
Q)

λ(
√
R)

eiLT emLT − 1

eLT − 1

(
Tρ(T ) + ηT

))2

+ 2
(λ(√Q)

λ(
√
R)

)2

eiLT×

emLT − 1

eLT − 1

(
Tρ(T ) + ηT

)‖x̂∗(kj + i|kj)‖Q
]

+
eNLT − e(N−m)LT

eLT − 1
(Tρ(T ) + ηT )(r + ε)

(29)

Adopting (14) in the triggering condition makes the following
inequality hold:

J∗(kj+1)− J∗(kj) ≤ −(1− σ)×
m−1∑
i=0

T
(
‖x̂∗(kj + i|kj)‖2Q + ‖û∗(kj + i|kj)‖2P

)
< 0

(30)

If there exists a system state which is out of Xr all the time, then
J∗(kj) → −∞ as kj → ∞, contradicting with J∗(kj) ≥ 0. So
the inequality (30) ensures that the system state will enter into Xr

in finite time. The property 3) in Assumption 3 and the condition
in (21) guarantee that the system state will remain in Xr . The proof
is then completed.

IV. SIMULATION RESULTS

In this part, we consider a cart-damper-spring system discussed
in [16] as follows:{

ẋ1(t) = x2(t)

ẋ2(t) = − k
Mc

e−x1(t)x1(t)− hd
Mc

x2(t) +
u(t)
Mc

+ w(t)
(31)

where x1(t) and x2(t) represent the cart’s displacement and ve-
locity respectively, u(t) is the control input, w(t) is the external
disturbance, Mc, k and hd denote the mass of the cart, the factor
of the spring and the damping factor respectively. The plant states
and the control input are constrained by |x1(t)| ≤ 1m, |x2(t)| ≤
1m/s and |u(t)| ≤ 0.5N. The external disturbance is bounded by
η = 0.005. The other related parameters are given as follows:
Mc = 0.75kg, k = 0.12N/m, hd = 0.6N·s/m. For simplicity,
using the disturbance-free Euler approximation of the system (31)
as{

x1(k + 1) = x1(k) + Tx2(k)

x2(k + 1) = − kT
Mc

e−x1(k)x1(k) + (1− Thd
Mc

)x2(k) +
Tu(k)
Mc

(32)

where the sampling period is determined as T = 0.1s. Other forms
of approximation: modified Euler approximation and Runge-Kutta
approximation, to name a few, have been established in [17].

Consider the implementation of the STMPC strategy into the
approximate DTM (32), the prediction horizon is set as N = 5. The
Lipschitz constant in (3) is calculated as L = 1.5297. We select
the form of the model error in (8) as Tρ(T ) = LMcT

2/2. The
limits in Xf and Xr are calculated as ε = 0.5814 and r = 0.6058.
The two weighting matrices P and Q are set as P = [1] and
Q = [1 0; 0 1]. Then the weighting matrix R can be determined
as R = [3.2602 1.1599; 1.1599 1.4811]. The initial state is x0 =
[−0.7 0.8]T . With MATLAB function fmincon, the FHOCP in
(11) can be solved then.
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Fig. 1. Trajectories of system state x1 under the proposed approximation-
based STMPC strategy and the RAMPC strategy in [16].
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Fig. 2. Trajectories of system state x2.

The simulation results are given in Fig. 1-4. by adopting three
general approximations: Euler approximation, modified Euler ap-
proximation and Runge-Kutta approximation. To show the effec-
tiveness of the approximation-based STMPC strategy, we compare
our results with the robust approximation-based MPC (RAMPC)
strategy in [16], i.e., using periodic sampling. It can be seen from
Fig. 1-3. that the continuous-time state and input constraints are
satisfied. Moreover, the state trajectories with bounded disturbance
under the proposed strategy converge to a neighbourhood of the
origin and are similar to the RAMPC strategy, showing that our
strategy has comparable performance. One can notice from Fig. 4.
that the proposed approximation-based STMPC strategy reduces
the computing frequency significantly compared with the RAMPC
strategy.

V. CONCLUSION

In this paper, we investigate a self-triggered MPC problem
for perturbed constrained nonlinear sampled-data systems. An
approximation-based STMPC strategy which ensures the feasibility
of the control problem and the stability of the overall system
has been put forward. The proposed strategy adopts approximate
DTM of the continuous-time system, making the computation of
the FHOCP tractable. By designing the triggering condition, the
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Fig. 4. Triggering instants under two strategies.

triggering instants to solve the control problem are pre-determined
and the computation load is alleviated. Eventually, the effectiveness
of our theoretical strategy is verified by a numerical simulation.
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